Spin-half paramagnetism in graphene induced by point defects

740Citations
Citations of this article
559Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The possibility to induce a magnetic response in graphene by the introduction of defects has been generating much interest, as this would expand the already impressive list of its special properties and allow novel devices where charge and spin manipulation could be combined. So far there have been many theoretical studies (for reviews, see refs 1-3) predicting that point defects in graphene should carry magnetic moments μ ∼ μ B and these can in principle couple (anti)ferromagnetically 1-12. However, experimental evidence for such magnetism remains both scarce and controversial 13-16. Here we show that point defects in graphene - (1) fluorine adatoms in concentrations x gradually increasing to stoichiometric fluorographene CF x=1.0 (ref. 17) and (2) irradiation defects (vacancies) - carry magnetic moments with spin 1/2. Both types of defect lead to notable paramagnetism but no magnetic ordering could be detected down to liquid helium temperatures. The induced paramagnetism dominates graphene's low-temperature magnetic properties, despite the fact that the maximum response we could achieve was limited to one moment per approximately 1,000 carbon atoms. This limitation is explained by clustering of adatoms and, for the case of vacancies, by the loss of graphene's structural stability. Our work clarifies the controversial issue of graphene's magnetism and sets limits for other graphitic compounds. © 2012 Macmillan Publishers Limited. All rights reserved.

Cite

CITATION STYLE

APA

Nair, R. R., Sepioni, M., Tsai, I. L., Lehtinen, O., Keinonen, J., Krasheninnikov, A. V., … Grigorieva, I. V. (2012). Spin-half paramagnetism in graphene induced by point defects. Nature Physics, 8(3), 199–202. https://doi.org/10.1038/nphys2183

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free