Quantitative real-time reverse transcription PCR (qRT-PCR) and cell culture (50% tissue culture infectious dose [TCID50]) were used to determine the effect of heat treatments on norovirus and hepatitis A virus (HAV) in the New Zealand Greenshell mussel (Perna canaliculus). Since it is common practice to cook mussels until the shells open, internal temperatures and opening times of mussels on boiling and steaming were determined at regular time intervals. Fifty mussels in batches of six were exposed to boiling and steaming. A mean internal temperature of 90°C (recommended for virus inactivation when maintained for 90 s) was reached after boiling for 170 s, with all 50 mussels open at 210 s. For steaming, the mean internal temperature achieved was only 83°C after 300 s, and all 50 mussels were open. When mussels were steamed for 180 s (mean internal temperature of 63°C), a significant 1.5-log decrease in the HAV titer (log TCID50) was observed. Following the immersion of mussels in boiling water for 180 s (mean internal temperature of 92°C), no viable HAV was detected. For both boiling and steaming experiments, there was no significant change in the norovirus or HAV qRT-PCR titers compared with the controls. Our results show that when New Zealand Greenshell mussels open on heating, their internal temperature may not reach the parameters required for virus inactivation. Immersion for a minimum of 3 min in boiling water rather than steaming is recommended to reduce the risk of viral foodborne illness from contaminated shellfish. Copyright ©, International Association for Food Protection.
CITATION STYLE
Hewitt, J., & Greening, G. E. (2006). Effect of heat treatment on hepatitis A virus and norovirus in New Zealand Greenshell mussels (Perna canaliculus) by quantitative real-time reverse transcription PCR and cell culture. Journal of Food Protection, 69(9), 2217–2223. https://doi.org/10.4315/0362-028X-69.9.2217
Mendeley helps you to discover research relevant for your work.