Controlling water-mediated interactions by designing self-assembled monolayer coatings

8Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Engineered nanoparticles have been broadly used in biological and geological systems. Hydrophilic molecules such as polyols have been used as coatings on nanoparticle surfaces due to their good biocompatibility and solubility in saline water. However, polyol coatings can cause huge retention of nanoparticles when encountering mineral surfaces. Here, molecular dynamics simulations enlightened that the strong adhesion of hydrophilic coatings to mineral surfaces stemming from the partitioning of the hydroxy groups on the hydrophilic molecules to the well-defined bound hydration layers on the mineral surfaces. To mitigate the nanoparticle adhesion, we investigated introducing small percentages of omniphobic fluoroalkanes to form a bicomponent system of hydrophilic and fluoroalkanes, which greatly perturbed the hydration layers on mineral surfaces and resulted in nonstick surface coatings. Our results provide important insight for the design of tunable “stickiness” nanoparticle coatings in different mineralogies, such as applications in subsurface environments or targeted delivery in mineralized tissues.

Cite

CITATION STYLE

APA

Chen, H., & Zhu, S. S. (2021). Controlling water-mediated interactions by designing self-assembled monolayer coatings. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87708-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free