On the CCN (de)activation nonlinearities

13Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

We take into consideration the evolution of particle size in a monodisperse aerosol population during activation and deactivation of cloud condensation nuclei (CCN). Our analysis reveals that the system undergoes a saddle-node bifurcation and a cusp catastrophe. The control parameters chosen for the analysis are the relative humidity and the particle concentration. An analytical estimate of the activation timescale is derived through estimation of the time spent in the saddle-node bifurcation bottleneck. Numerical integration of the system coupled with a simple air-parcel cloud model portrays two types of activation/deactivation hystereses: one associated with the kinetic limitations on droplet growth when the system is far from equilibrium, and one occurring close to equilibrium and associated with the cusp catastrophe. We discuss the presented analyses in context of the development of particle-based models of aerosol-cloud interactions in which activation and deactivation impose stringent time-resolution constraints on numerical integration.

Cite

CITATION STYLE

APA

Arabas, S., & Shima, S. I. (2017). On the CCN (de)activation nonlinearities. Nonlinear Processes in Geophysics, 24(3), 535–542. https://doi.org/10.5194/npg-24-535-2017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free