Hieracium is an established model system for studying the cytological and genetic basis of gametophytic apomixis. In common with most known apomicts, the formation of 'maternal seed' is not exclusive in Hieracium, as apomixis operates in conjunction with a low level of sexuality. When this occurs the form of apomixis is described as 'facultative'. The formation of maternal seed in these plants is characterised by the avoidance of meiosis followed by the parthenogenetic development of an unreduced egg cell. In some ovules, however, meiosis does proceed, and sometimes the fertilisation of an egg cell presages embryogenesis. As a result, this mechanism of facultative apomixis leads to the formation of several different types of progeny, each representing a unique combination of meiosis/apomeiosis and fertilisation/parthenogenesis. Furthermore, fertilisation may involve either self or non-self pollen, leading to the recognition of six progeny classes from each individual plant. To facilitate an understanding of these processes we have developed a method for identifying individuals from different progeny classes based on the inheritance of introduced heterologous marker genes. This technique permits the screening of many thousands of seedlings at germination, and the consequent isolation of individuals associated with rare classes. Progeny profiles were determined for two apomictic accessions of Hieracium. Both were found to develop approximately 2.5 % of their seed from meiotically derived eggs under the experimental conditions used and to have a rate of hybridity of approximately 2 %. Evidence was also found for the action of a self-incompatibility mechanism operating in these plants despite the autonomous nature of apomixis in Hieracium. As a demonstration of the utility of this approach, a study was conducted of polyembryony in one accession. The results indicate that there was a 7 fold greater likelihood that a meiotically derived seedling would arise in a polyembryonic seed than in a single-embryo seed. This indicates that facultative apomixis in Hieracium not only results from the simultaneous occurrence of sexual and asexual seed formation in the same capitulum as previously demonstrated, but most often as parallel processes within the same ovule.
CITATION STYLE
Bicknell, R. A., Lambie, S. C., & Butler, R. C. (2003). Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas, 138(1), 11–20. https://doi.org/10.1034/j.1601-5223.2003.01624.x
Mendeley helps you to discover research relevant for your work.