Background: Severe kyphotic deformities carry high risk for neurological injuries as osteotomies are often required for correction. Surgeons often utilize a staged approach for dealing with these conditions starting with a period of halo traction to stretch tight soft tissues and partially correct the deformity, followed by surgery. Halo traction is a relatively safe procedure and complications are uncommon. We report a unique case of iatrogenic fracture of the cervical spine during gradual halo traction for deformity correction of a severe cervical kyphosis. Case presentation: An 80-year-old female with previous cervical spine tuberculosis infection and C5-C6 anterior spinal fusion developed severe cervical kyphosis of 64° from C2-C6 and neck pain requiring deformity correction surgery. Gradual increase in traction weight was applied, aiming for a maximum traction weight of 45 pounds or half body weight. During the 1st stage halo-gravity traction, sudden neck pain and a loud cracking sound was witnessed during increase of the traction weight to 14 pounds. Imaging revealed a fracture through the C4 and reduction in kyphosis deformity to 11° from C2-C6. There was no neurological deficit. No further traction was applied and the patient underwent an in-situ occipital to T3 fusion without osteotomies. At 3-year follow-up, the patient was symptom-free and radiographs showed solid fusion and maintenance of alignment. Conclusions: Iatrogenic fracture may occur with halo traction. Elderly patients with osteoporotic and diseased bone should be closely monitored during the treatment. A fracture without complications was a fortunate complication as the patient was able to avoid any high-risk osteotomies for deformity correction. Level of evidence: IV
CITATION STYLE
Lim, A. S. L., Sali, A. A. B., & Cheung, J. P. Y. (2020). Iatrogenic biological fracture of the cervical spine during gradual halo traction for kyphotic deformity correction: Case report. BMC Musculoskeletal Disorders, 21(1). https://doi.org/10.1186/s12891-020-03350-x
Mendeley helps you to discover research relevant for your work.