Stabilization of gamma sulfur at room temperature to enable the use of carbonate electrolyte in Li-S batteries

28Citations
Citations of this article
117Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This past decade has seen extensive research in lithium-sulfur batteries with exemplary works mitigating the notorious polysulfide shuttling. However, these works utilize ether electrolytes that are highly volatile severely hindering their practicality. Here, we stabilize a rare monoclinic γ-sulfur phase within carbon nanofibers that enables successful operation of Lithium-Sulfur (Li-S) batteries in carbonate electrolyte for 4000 cycles. Carbonates are known to adversely react with the intermediate polysulfides and shut down Li-S batteries in first discharge. Through electrochemical characterization and post-mortem spectroscopy/ microscopy studies on cycled cells, we demonstrate an altered redox mechanism in our cells that reversibly converts monoclinic sulfur to Li2S without the formation of intermediate polysulfides for the entire range of 4000 cycles. To the best of our knowledge, this is the first study to report the synthesis of stable γ-sulfur and its application in Li-S batteries. We hope that this striking discovery of solid-to-solid reaction will trigger new fundamental and applied research in carbonate electrolyte Li-S batteries.

Cite

CITATION STYLE

APA

Pai, R., Singh, A., Tang, M. H., & Kalra, V. (2022). Stabilization of gamma sulfur at room temperature to enable the use of carbonate electrolyte in Li-S batteries. Communications Chemistry, 5(1). https://doi.org/10.1038/s42004-022-00626-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free