Gut-derived infection is among the most common complications in patients who underwent severe trauma, serious burn, major surgery, hemorrhagic shock or severe acute pancreatitis (SAP). It could cause sepsis and multiple organ dysfunction syndrome (MODS), which are regarded as a leading cause of mortality in these cases. Gut-derived infection is commonly caused by pathological translocation of intestinal bacteria or endotoxins, resulting from the dysfunction of the gut barrier. In the last decades, the studies regarding to the pathogenesis of gut-derived infection mainly focused on the breakdown of intestinal epithelial tight junction and increased permeability. Limited information is available on the roles of intestinal microbial barrier in the development of gut-derived infection. Recently, advances of next-generation DNA sequencing techniques and its utilization has revolutionized the gut microecology, leading to novel views into the composition of the intestinal microbiota and its connections with multiple diseases. Here, we reviewed the recent progress in the research field of intestinal barrier disruption and gut-derived infection, mainly through the perspectives of the dysbiosis of intestinal microbiota and its interaction with intestinal mucosal immune cells. This review presents novel insights into how the gut microbiota collaborates with mucosal immune cells to involve the development of pathological bacterial translocation. The data might have important implication to better understand the mechanism underlying pathological bacterial translocation, contributing us to develop new strategies for prevention and treatment of gut-derived sepsis.
CITATION STYLE
Wang, C., Li, Q., & Ren, J. (2019). Microbiota-immune interaction in the pathogenesis of gut-derived infection. Frontiers in Immunology. Frontiers Media S.A. https://doi.org/10.3389/fimmu.2019.01873
Mendeley helps you to discover research relevant for your work.