Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis

33Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The overexpression of key enzymes in a metabolic pathway is a frequently used genetic engineering strategy for strain improvement. Metabolic control analysis has been proposed to quantitatively determine key enzymes. However, the lack of quality data often makes it difficult to correctly identify key enzymes through control analysis. Here, we proposed a method combining in vitro metabolic pathway analysis and proteomics measurement to find the key enzymes in threonine synthesis pathway. Results: All enzymes in the threonine synthesis pathway were purified for the reconstruction and perturbation of the in vitro pathway. Label-free proteomics technology combined with APEX (absolute protein expression measurements) data analysis method were employed to determine the absolute enzyme concentrations in the crude enzyme extract obtained from a threonine production strain during the fastest threonine production period. The flux control coefficient of each enzyme in the pathway was then calculated by measuring the flux changes after titration of the corresponding enzyme. The isoenzyme LysC catalyzing the first step in the pathway has the largest flux control coefficient, and thus its concentration change has the biggest impact on pathway flux. To verify that the key enzyme identified through in vitro pathway analysis is also the key enzyme in vivo, we overexpressed LysC in the original threonine production strain. Fermentation results showed that the threonine concentration was increased 30% and the yield was increased 20%. Conclusions: In vitro metabolic pathways simulating in vivo cells can be built based on precise measurement of enzyme concentrations through proteomics technology and used for the determination of key enzymes through metabolic control analysis. This provides a new way to find gene overexpression targets for industrial strain improvement.

Cite

CITATION STYLE

APA

Zhang, Y., Meng, Q., Ma, H., Liu, Y., Cao, G., Zhang, X., … Ma, Y. (2015). Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis. Microbial Cell Factories, 14(1). https://doi.org/10.1186/s12934-015-0275-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free