Islet transplantation to treat type 1 diabetes has been limited in part by toxicities of current immunosuppression and recipient humoral sensitization. Blockade of the CD28/CD80/86 and CD40/CD154 pathways has shown promise to remedy both these limitations, but translation has been hampered by difficulties in translating CD154-directed therapies. Prior CD40-directed regimens have led to prolonged islet survival, but fail to prevent humoral allosensitization. We therefore evaluated the addition of CTLA4Ig to a CD40 blockadebased regimen in nonhuman primate (NHP) alloislet transplantation. Diabetic rhesus macaqueswere transplanted allogeneic islets using the CD40-specific antibody 3A8, basiliximab induction, and sirolimus with or without CTLA4Ig maintenance therapy. Allograft survival was determined by fasting blood glucose levels and flow cytometric techniques were used to test for donor-specific antibody (DSA) formation. CTLA4Ig plus 3A8, basiliximab and sirolimus was well tolerated and induced long-term islet allograft survival. The addition of CTLA4Ig prevented DSA formation, but did not facilitate withdrawal of the 3A8-based regimen. Thus, CTLA4Ig combines with a CD40-specific regimen to prevent DSA formation in NHPs, and offers a potentially translatable calcineurin inhibitor-free protocol inclusive of a single investigational agent for use in clinical islet transplantation without relying upon CD154 blockade. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
CITATION STYLE
Badell, I. R., Russell, M. C., Cardona, K., Shaffer, V. O., Turner, A. P., Avila, J. G., … Larsen, C. P. (2012). CTLA4Ig prevents alloantibody formation following nonhuman primate islet transplantation using the CD40-specific antibody 3A8. American Journal of Transplantation, 12(7), 1918–1923. https://doi.org/10.1111/j.1600-6143.2012.04029.x
Mendeley helps you to discover research relevant for your work.