A capillary interaction between floating objects and adjacent walls, which is known as “Cheerios effect”, is a common phenomenon that generates capillary attraction or repulsion forces between them depending on their wettabilities, densities, geometries, and so on. This paper deals with controlling the capillary forces, specifically, acting on objects floating on a dielectric (non-conductive) fluid. A key control input parameter is the wettability (contact angle) of the sidewall adjacent to the floating object. By introducing dielectrowetting to the sidewall and actively changing the contact angle on the sidewall, the capillary force is controlled and easily reversed between attraction and repulsion. In this reversing process, the tilting angle of the sidewall is another critical parameter. A theoretical relation taking the titling angle into account is compared and in good agreement with experimental results obtained from the trajectory of the floating object. Finally, a continuous motion of the floating object is demonstrated using this control where an array of dielectrowetting electrode pads is sequentially activated.
CITATION STYLE
Yuan, J., Feng, J., & Cho, S. K. (2021). Dielectrowetting control of capillary force (Cheerios effect) between floating objects and wall for dielectric fluid. Micromachines, 12(3). https://doi.org/10.3390/mi12030341
Mendeley helps you to discover research relevant for your work.