The plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli is a cytopathic serine protease, which is prototypical of a large family of bacterial autotransporter toxins. To further elucidate the structure-function relationships of this toxin, we employed transposon-based scanning linker mutagenesis. A subset of insertions throughout the Pet mature toxin (passenger) domain reduced secretion to the extracellular space. Many of these mutants were undetectable, but secretion of a subset of mutants with insertions in the N-terminal half of the toxin could be restored to wild type secretion levels if cultured in the presence of 0.1% Triton X-100. Secretion of two mutants with insertions at the extreme C terminus was partially restored when co-expressed with a minimal clone of EspP, a related autotransporter protein. Several well secreted mutants with insertions in the N-terminal third of the molecule reduced protease activity over 20-fold, suggesting that the protease domain is located within this N-terminal region of Pet. We have also identified two insertional mutants in the middle of the passenger domain that were proteolytic but no longer cytopathic; these mutants displayed decreased binding and internalization upon incubation with HEp-2 cells. Our data suggest the existence of separate functional domains mediating Pet proteolysis, secretion, and cell interaction.
CITATION STYLE
Dutta, P. R., Sui, B. Q., & Nataro, J. P. (2003). Structure-function analysis of the enteroaggregative Escherichia coli plasmid-encoded toxin autotransporter using scanning linker mutagenesis. Journal of Biological Chemistry, 278(41), 39912–39920. https://doi.org/10.1074/jbc.M303595200
Mendeley helps you to discover research relevant for your work.