Performance Analysis of a Helical Savonius Rotor with Shaft at 45° Twist Angle Using CFD

  • Gupta R
  • Deb B
  • Misra R
N/ACitations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Helical Savonius rotor is considered to be superior to conventional Savonius rotor in terms of higher power coefficient (Cp) and better starting characteristic. However studies related to helical Savonius rotors is few. In view of this, in this paper, the performance of a helical Savonius rotor with shaft at 45° bucket twist angle for one complete cycle of rotation was analyzed using Computational Fluid Dynamics. A two-bucket helical Savonius rotor with shaft was designed using GAMBIT, having a height of 60 cm and diameter of 17 cm with 45° bucket twist angle. A three dimensional Computational Fluid Dynamics analysis using Fluent package was done to predict the performance of the rotor. Standard k-? turbulence model with second order upwind discretization scheme and standard wall condition was used. Grid independence test was also conducted to have the best meshing accuracy. Power coefficients (Cp) of the rotor at different tip speed ratios were evaluated for rotor angle variation from 0° to 180°. Cp at each rotor angle increased with increase of tip speed ratio up to an optimum tip speed ratio, but then decreased even if tip speed ratio was further increased. Moreover, the effect of rotor angle on Cp in a complete cycle of rotation was analyzed. Cp was found to be positive at all rotor angles, and higher values of Cp were obtained at rotor angles namely 45°, 90°, 225° and 270°, which would contribute maximum power production by the rotor. In addition to these, flow physics of the rotor was studied using tangential velocity plots w.r.t. rotor angle and path lines across the rotor. It was found that at 45°, 90° and 135° rotor angles, maximum concentration of the path lines near the tip of the blades in the upstream and downstream side of the rotor had occurred, which would be responsible for generation of maximum power coefficient in its clockwise rotation.

Cite

CITATION STYLE

APA

Gupta, R., Deb, B., & Misra, R. D. (2013). Performance Analysis of a Helical Savonius Rotor with Shaft at 45° Twist Angle Using CFD. Mechanical Engineering Research, 3(1), 118. https://doi.org/10.5539/mer.v3n1p118

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free