CVNet: confidence voting convolutional neural network for camera spectral sensitivity estimation

  • He T
  • Zhang Q
  • Zhou M
  • et al.
5Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Spectral sensitivity, as one of the most important parameters of a digital camera, is playing a key role in many computer vision applications. In this paper, a confidence voting convolutional neural network (CVNet) is proposed to rebuild the spectral sensitivity function, modeled as the sum of weighted basis functions. By evaluating useful information supplied by different image segments, disparate confidence is calculated to automatically learn basis functions’ weights, only using one image captured by the object camera. Three types of basis functions are made up and employed in the network, including Fourier basis function (FBF), singular value decomposition basis function (SVDBF), and radial basis function (RBF). Results show that the accuracy of the proposed method with FBF, SVDBF, and RBF is 97.92%, 98.69%, and 99.01%, respectively. We provide theory for network design, build a dataset, demonstrate training process, and present experimental results with high precision. Without bulky benchtop setups and strict experimental limitations, this proposed simple and effective method could be an alternative in the future for spectral sensitivity function estimation.

Cite

CITATION STYLE

APA

He, T., Zhang, Q., Zhou, M., & Shen, J. (2021). CVNet: confidence voting convolutional neural network for camera spectral sensitivity estimation. Optics Express, 29(13), 19655. https://doi.org/10.1364/oe.425988

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free