MinE conformational dynamics regulate membrane binding, MinD interaction, and Min oscillation

36Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

In Escherichia coli MinE induces MinC/MinD to oscillate between the ends of the cell, contributing to the precise placement of the Z ring at midcell. To do this, MinE undergoes a remarkable conformational change from a latent 6β-stranded form that diffuses in the cytoplasm to an active 4β-stranded form bound to the membrane and MinD. How this conformational switch occurs is not known. Here, using hydrogen–deuterium exchange coupled to mass spectrometry (HDX-MS) we rule out a model in which the two forms are in rapid equilibrium. Furthermore, HDX-MS revealed that a MinE mutant (D45A/V49A), previously shown to produce an aberrant oscillation and unable to assemble a MinE ring, is more rigid than WT MinE. This mutant has a defect in interaction with MinD, suggesting it has difficulty in switching to the active form. Analysis of intragenic suppressors of this mutant suggests it has difficulty in releasing the N-terminal membrane targeting sequences (MTS). These results indicate that the dynamic association of the MTS with the β-sheet is fine-tuned to balance MinE’s need to sense MinD on the membrane with its need to diffuse in the cytoplasm, both of which are necessary for the oscillation. The results lead to models for MinE activation and MinE ring formation.

Cite

CITATION STYLE

APA

Park, K. T., Villar, M. T., Artigues, A., & Lutkenhaus, J. (2017). MinE conformational dynamics regulate membrane binding, MinD interaction, and Min oscillation. Proceedings of the National Academy of Sciences of the United States of America, 114(29), 7497–7504. https://doi.org/10.1073/pnas.1707385114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free