Perineuronal net expression in the brain of a hibernating mammal

5Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

During hibernation, mammals like the 13-lined ground squirrel cycle between physiological extremes. Most of the hibernation season is spent in bouts of torpor, where body temperature, heart rate, and cerebral blood flow are all very low. However, the ground squirrels periodically enter into interbout arousals (IBAs), where physiological parameters return to non-hibernating levels. During torpor, neurons in many brain regions shrink and become electrically quiescent, but reconnect and regain activity during IBA. Previous work showed evidence of extracellular matrix (ECM) changes occurring in the hypothalamus during hibernation that could be associated with this plasticity. Here, we examined expression of a specialized ECM structure, the perineuronal net (PNN), in the forebrain of ground squirrels in torpor, IBA, and summer (non-hibernating). PNNs are known to restrict plasticity, and could be important for retaining essential connections in the brain during hibernation. We found PNNs in three regions of the hypothalamus: ventrolateral hypothalamus, paraventricular nucleus (PVN), and anterior hypothalamic area. We also found PNNs throughout the cerebral cortex, amygdala, and lateral septum. The total area covered by PNNs within the PVN was significantly higher during IBA compared to non-hibernating and torpor (P < 0.01). Additionally, the amount of PNN coverage area per Nissl-stained neuron in the PVN was significantly higher in hibernation compared to non-hibernating (P < 0.05). No other significant differences were found across seasons. The PVN is involved in food intake and homeostasis, and PNNs found here could be essential for retaining vital life functions during hibernation.

Cite

CITATION STYLE

APA

Marchand, A., & Schwartz, C. (2020). Perineuronal net expression in the brain of a hibernating mammal. Brain Structure and Function, 225(1), 45–56. https://doi.org/10.1007/s00429-019-01983-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free