Abscisic acid (ABA)-deficient mutants of Arabidopsis do not synthesize the epoxy-xanthopbylls antheraxanthin, violaxanthin, or neoxanthin. However, thylakoid membranes from these mutants contain 3-fold more zeaxanthin than wild-type plants. This increase in zeaxanthin occurs as a stoichiometric replacement of the missing violaxanthin and neoxanthin within the pigment-protein complexes of both photosystem I and photosystem II (PSII). The retention of zeaxanthin in the dark by ABA-deficient mutants sensitizes the leaves to the development of nonphotochemical quenching (NPQ) during the first 2 to 4 min following a dark-light transition. However, the increase in pool size does not result in any increase in steady-state NPQ. When we exposed wild-type and ABA-deficient mutants leaves to twice growth irradiance, the mutants developed lower maximal NPQ but suffered similar photoinhibition to wild-type, measured both as a decline in the ratio of variable to maximal fluorescence and as a loss of functional PSII centers from oxygen flash yield measurements. These results suggest that only a few of the zeaxanthin molecules present within the light-harvesting antenna of PSII may be involved in NPQ and neither the accumulation of a large pool of zeaxanthin within the antenna of PSII nor an increase in conversion of violaxanthin to zeaxanthin will necessarily enhance photoprotective energy dissipation.
CITATION STYLE
Hurry, V., Anderson, J. M., Chow, W. S., & Osmond, C. B. (1997). Accumulation of zeaxanthin in abscisic acid-deficient mutants of Arabidopsis does not affect chlorophyll fluorescence quenching or sensitivity to photoinhibition in vivo. Plant Physiology, 113(2), 639–648. https://doi.org/10.1104/pp.113.2.639
Mendeley helps you to discover research relevant for your work.