YmdB: A stress-responsive ribonuclease-binding regulator of E. coli RNase III activity

60Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

The broad cellular actions of RNase III family enzymes include ribosomal RNA (rRNA) processing, mRNA decay, and the generation of noncoding microRNAs in both prokaryotes and eukaryotes. Here we report that YmdB, an evolutionarily conserved 18.8-kDa protein of Escherichia coli of previously unknown function, is a regulator of RNase III cleavages. We show that YmdB functions by interacting with a site in the RNase III catalytic region, that expression of YmdB is transcriptionally activated by both cold-shock stress and the entry of cells into stationary phase, and that this activation requires the σ-factor-encoding gene, rpoS. We discovered that down-regulation of RNase III activity occurs during both stresses and is dependent on YmdB production during cold shock; in contrast, stationary-phase regulation was unperturbed in ymdB-null mutant bacteria, indicating the existence of additional, YmdB-independent, factors that dynamically regulate RNase III actions during normal cell growth. Our results reveal the previously unsuspected role of ribonuclease-binding proteins in the regulation of RNase III activity. © 2008 by Cold Spring Harbor Laboratory Press.

Cite

CITATION STYLE

APA

Kim, K. S., Manasherob, R., & Cohen, S. N. (2008). YmdB: A stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes and Development, 22(24), 3497–3508. https://doi.org/10.1101/gad.1729508

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free