Advances in Thermoelectric Composites Consisting of Conductive Polymers and Fillers with Different Architectures

8Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Stretchable wireless power is in increasingly high demand in fields such as smart devices, flexible robots, and electronic skins. Thermoelectric devices are able to convert heat into electricity due to the Seebeck effect, making them promising candidates for wearable electronics. Therefore, high-performance conductive polymer-based composites are urgently required for flexible wearable thermoelectric devices for the utilization of low-grade thermal energy. In this review, mechanisms and optimization strategies for polymer-based thermoelectric composites containing fillers of different architectures will be introduced, and recent advances in the development of such thermoelectric composites containing 0- to 3-dimensional filler components will be presented and outlooked.

Cite

CITATION STYLE

APA

Huo, B., & Guo, C. Y. (2022, October 1). Advances in Thermoelectric Composites Consisting of Conductive Polymers and Fillers with Different Architectures. Molecules. MDPI. https://doi.org/10.3390/molecules27206932

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free