Multidecadal variability of Atlantic tropical cyclone activity is observed to relate to the Atlantic Multidecadal Oscillation (AMO), a mode manifesting primarily in sea surface temperature (SST) in the high latitudes of the North Atlantic. In the low latitudes of the North Atlantic, a large body of warm water called the Atlantic Warm Pool (AWP) comprises the Gulf of Mexico, the Caribbean Sea, and the western tropical North Atlantic. AWP variability occurs on both interannual and multidecadal timescales as well as with a secular variation. The AWP multidecadal variability coincides with the signal of the AMO; that is, the warm (cool) phases of the AMO are characterized by repeated large (small) AWPs. Since the climate response to the North Atlantic SST anomalies is primarily forced at the low latitudes and the AWP is in the path of or a birthplace for Atlantic tropical cyclones, the influence of the AMO on Atlantic tropical cyclone activity may operate through the mechanism of the AWP-induced atmospheric changes. The AWP-induced changes related to tropical cyclones that we emphasize here include a dynamical parameter of tropospheric vertical wind shear and a thermodynamical parameter of convective instability. More specifically, an anomalously large (small) AWP reduces (enhances) the vertical wind shear in the hurricane main development region and increases (decreases) the moist static instability of the troposphere, both of which favor (disfavor) Atlantic tropical cyclone activity. This is the most plausible way in which the AMO relationship with Atlantic tropical cyclones can be understood. Copyrignt 2008 by the American Geophysical Union.
CITATION STYLE
Wang, C., Lee, S. K., & Enfield, D. B. (2008). Atlantic warm pool acting as a link between atlantic multidecadal oscillation and atlantic tropical cyclone activity. Geochemistry, Geophysics, Geosystems, 9(5). https://doi.org/10.1029/2007GC001809
Mendeley helps you to discover research relevant for your work.