Modeling of ammonothermal growth processes of GaN crystal in large-size pressure systems

7Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Gallium nitride (GaN) is a wide-bandgap semiconductor material with a wide array of applications in optoelectronics and electronics. Modeling of the fluid flow and thermal fields is discussed, and simulations of velocity and volumetric-flow-rate profiles in different pressure systems are shown. The nutrient is considered as a porous media bed, and the flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite-volume method. We analyzed the heat and mass transfer behaviors in autoclaves with diameters of 2.22, 4.44, and 10 cm. The effects of baffle design on flow pattern, and heat and mass transfer in different autoclaves are analyzed. For the research-grade autoclave with diameter of 2.22 cm, the constraint for the GaN growth is found to be the growth kinetics and the total area of seed surfaces in the case of baffle opening of 10%. For large-size pressure systems, the concentration profiles change dramatically due to stronger convection at higher Grashof numbers. The volumetric flow rates of the solvent across the baffles are calculated. Since ammonothermal growth experiments are expensive and time consuming, modeling becomes an effective tool for research and optimization of ammonothermal growth processes. © 2011 Springer Science+Business Media B.V.

Cite

CITATION STYLE

APA

Chen, Q. S., Jiang, Y. N., Yan, J. Y., Li, W., & Prasad, V. (2011). Modeling of ammonothermal growth processes of GaN crystal in large-size pressure systems. In Research on Chemical Intermediates (Vol. 37, pp. 467–477). https://doi.org/10.1007/s11164-011-0276-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free