limiting factor. Striving to optimize the use of this limited resource, the aspect that long distance procurement may increase the available donor pool must be taken into consideration. As poly(ADP-ribose)polymerase (PARP)-activation has been identified as a key pathway of reperfusion injury, we assessed the hypothesis that its inhibition would allow an extension of cold preservation time and protect the graft against ischaemia/reperfusion injury. METHODS: Hearts from donor rats were explanted, stored in a preservation solution (Custodiol) at 4 °C for 4 h or 8 h, and heterotopically transplanted. A vehicle or the PARP-inhibitor, INO-1001 (5 mg/kg), was administered during the reperfusion period. We evaluated posttransplant graft function with a Millar micromanometer at different left-ventricular volumes. Additionally, in organ bath experiments the effect of PARP-inhibition on endothelium-dependent and -independent vasorelaxation was evaluated after long-term cold ischaemic storage/warm reperfusion. RESULTS: PARP-inhibition resulted in a better systolic functional recovery of grafts submitted to 4 h and 8 h ischaemia. Furthermore, INO- 1001 decreased the left-ventricular end-diastolic pressure after 8 h of ischaemia. Coronary blood flow was significantly higher after PARPinhibition in comparison to controls. Endothelium-dependent vasorelaxation was significantly better in the INO-1001-groups than in the vehicle-treated transplant groups. After 24-h hypothermic storage, treatment of aortic ring with INO-1001 during reoxygenation significantly improved endothelial dysfunction. CONCLUSIONS: By inhibiting the PARP activation, INO-1001 can protect the graft and endothelium from the injury that is caused by prolonged cold myocardial ischaemia/reperfusion, thereby improving post-transplant graft function.
CITATION STYLE
Korkmaz-Icöz, S., Radovits, T., Loganathan, S., Li, S., Ruppert, M., Benke, K., … Szabó, G. (2017). Prolonging hypothermic ischaemic cardiac and vascular storage by inhibiting the activation of the nuclear enzyme poly(adenosine diphosphate-ribose) polymerase. European Journal of Cardio-Thoracic Surgery, 51(5), 829–835. https://doi.org/10.1093/ejcts/ezw426
Mendeley helps you to discover research relevant for your work.