Rho GTPases are the preferred targets of various bacterial cytotoxins, including Clostridium difficile toxins A and B, Clostridium sordellii lethal toxin, the cytotoxic necrotizing factors (CNF1) from Escherichia coli, and the dermonecrotizing toxin (DNT) from Bordetella species. The toxins inactivate or activate specific sets of Rho GTPases by mono-O-glucosylation and deamidation/transglutamination, respectively. Here we studied the structural basis of the recognition of RhoA, which is modified by toxin B, CNF1, and DNT, in comparison with RhoD, which is solely a substrate for lethal toxin.Wefound that a single amino acid residue in RhoA and RhoD defines the substrate specificity for toxin B and lethal toxin. Change of serine 73 to phenylalanine in RhoA turned RhoA into a substrate for lethal toxin. Accordingly, change of the equivalently positioned phenylalanine 85 in RhoD with serine allowed glucosylation by toxin B. Comparable results were achieved with the Rho-activating and transglutaminating enzymes CNF1 and DNT. Here, amino acid glutamate 64 of RhoA and the equivalent aspartate 76 of RhoD define substrate specificity for CNF1 and DNT, respectively. These data indicate that single amino acid residues located in the switch II region of Rho proteins determine enzyme specificity for diverse bacterial toxins. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Jank, T., Pack, U., Giesemann, T., Schmidt, G., & Aktories, K. (2006). Exchange of a single amino acid switches the substrate properties of RhoA and RhoD toward glucosylating and transglutaminating toxins. Journal of Biological Chemistry, 281(28), 19527–19535. https://doi.org/10.1074/jbc.M600863200
Mendeley helps you to discover research relevant for your work.