Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (Fragaria × ananassa)

57Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Strawberry (Fragaria × ananassa) is a fruit crop with a distinct biphasic flavonoid biosynthesis. Whereas, in the immature receptacle, high levels of proanthocyanidins accumulate, which are associated with herbivore deterrence and pathogen defense, the prominent color-giving anthocyanins are primarily produced in ripe 'fruits' helping to attract herbivores for seed dispersal. Here, constitutive experimental down-regulation of one branch of proanthocyanidin biosynthesis was performed. As a result, the proportion of epicatechin monomeric units within the proanthocyanidin polymer chains was reduced, but this was not the case for the epicatechin starter unit. Shortened chain lengths of proanthocyanidins were also observed. All enzymatic activities for the production of color-giving anthocyanins were already present in unripe fruits at levels allowing a striking red anthocyanin phenotype in unripe fruits of the RNAi silencing lines. An immediately recognizable phenotype was also observed for the stigmata of flowers, which is another epicatechin-forming tissue. Thus, the down-regulation of anthocyanidin reductase (ANR) induced a redirection of the proanthocyanidin pathway, leading to premature and ectopic anthocyanin biosynthesis via enzymatic glycosylation as the alternative pathway. This redirection is also seen in flavonol biosynthesis, which is paralleled by higher pollen viability in silencing lines. ANRi transgenic lines of strawberry provide a versatile tool for the study of the biological functions of proanthocyanidins. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

Cite

CITATION STYLE

APA

Fischer, T. C., Mirbeth, B., Rentsch, J., Sutter, C., Ring, L., Flachowsky, H., … Schwab, W. (2014). Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (Fragaria × ananassa). New Phytologist, 201(2), 440–451. https://doi.org/10.1111/nph.12528

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free