Gas Flow-Dependent Modification of Plasma Chemistry in μAPP Jet-Generated Cold Atmospheric Plasma and Its Impact on Human Skin Fibroblasts

8Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The micro-scaled Atmospheric Pressure Plasma Jet (µAPPJ) is operated with low carrier gas flows (0.25–1.4 slm), preventing excessive dehydration and osmotic effects in the exposed area. A higher yield of reactive oxygen or nitrogen species (ROS or RNS) in the µAAPJ-generated plasmas (CAP) was achieved, due to atmospheric impurities in the working gas. With CAPs generated at different gas flows, we characterized their impact on physical/chemical changes of buffers and on biological parameters of human skin fibroblasts (hsFB). CAP treatments of buffer at 0.25 slm led to increased concentrations of nitrate (~352 µM), hydrogen peroxide (H2O2; ~124 µM) and nitrite (~161 µM). With 1.40 slm, significantly lower concentrations of nitrate (~10 µM) and nitrite (~44 µM) but a strongly increased H2O2 concentration (~1265 µM) was achieved. CAP-induced toxicity of hsFB cultures correlated with the accumulated H2O2 concentrations (20% at 0.25 slm vs. ~49% at 1.40 slm). Adverse biological consequences of CAP exposure could be reversed by exogenously applied catalase. Due to the possibility of being able to influence the plasma chemistry solely by modulating the gas flow, the therapeutic use of the µAPPJ represents an interesting option for clinical use.

Cite

CITATION STYLE

APA

Feibel, D., Golda, J., Held, J., Awakowicz, P., Schulz-von der Gathen, V., Suschek, C. V., … Jansen, F. (2023). Gas Flow-Dependent Modification of Plasma Chemistry in μAPP Jet-Generated Cold Atmospheric Plasma and Its Impact on Human Skin Fibroblasts. Biomedicines, 11(5). https://doi.org/10.3390/biomedicines11051242

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free