Game theory has become an important tool to study the competition between oligopolistic enterprises. After combing the existing literature, it is found that there is no research combining two-stage game and nonlinear dynamics to analyze the competition between enterprises for advertising. Therefore, this paper establishes a two-stage game model to discuss the effect of the degree of firms' advertising input on their profits. And the complexity of the system is analyzed using nonlinear dynamics. This paper analyzes and studies the dynamic game for two types of application network models: data transmission model and transportation network model. Under the time-gap ALOHA protocol, the noncooperative behavior of the insiders in the dynamic data transmission stochastic game is examined as well as the cooperative behavior. In this paper, the existence of Nash equilibrium and its solution algorithm are proved in the noncooperative case, and the "subgame consistency"of the cooperative solution (Shapley value) is discussed in the cooperative case, and the cooperative solution satisfying the subgame consistency is obtained by constructing the "allocation compensation procedure."The cooperative solution is obtained by constructing the "allocation compensation procedure"to satisfy the subgame consistency. In this paper, we propose to classify the packets transmitted by the source nodes, and by changing the strategy of the source nodes at the states with different kinds of packets, we find that the equilibrium payment of the insider increases in the noncooperative game with the addition of the "wait"strategy. In the transportation dynamic network model, the problem of passenger flow distribution and the selection of service parameters of transportation companies are also studied, and a two-stage game theoretical model is proposed to solve the equilibrium price and optimal parameters under Wardrop's criterion.
CITATION STYLE
Long, Y., & Zhao, H. (2022). Marketing Resource Allocation Strategy Optimization Based on Dynamic Game Model. Journal of Mathematics, 2022. https://doi.org/10.1155/2022/4370298
Mendeley helps you to discover research relevant for your work.