Alzheimer’s disease (AD) is an incurable and highly debilitating condition characterized by the progressive degeneration and/or death of nerve cells, which leads to manifestation of disabilities in cognitive functioning. In recent years, the development of biosensors for determination of AD’s main biomarkers has made remarkable progress, particularly based on the tremendous advances in nanoscience and nanotechnology. The unique and outstanding properties of nanomaterials (such as graphene, carbon nanotubes, gold, silver and magnetic nanoparticles, polymers and quantum dots) have been contributing to enhance the electrochemical and optical behavior of transducers while offering a suitable matrix for the immobilization of biological recognition elements. Therefore, optical and electrochemical immuno-and DNA-biosensors with higher sensitivity, selectivity and longer stability have been reported. Nevertheless, strategies based on the detection of multiple analytes still need to be improved, as they will play a crucial role in minimizing misdiagnosis. This review aims to provide insights into the conjugation of nanomaterials with different transducers highlighting their crucial role in the construction of biosensors for detection of AD main biomarkers.
CITATION STYLE
Carneiro, P., Morais, S., & Pereira, M. C. (2019, December 1). Nanomaterials towards biosensing of Alzheimer’s disease biomarkers. Nanomaterials. MDPI AG. https://doi.org/10.3390/nano9121663
Mendeley helps you to discover research relevant for your work.