This study aims to design a vertical axis wind turbine that can effectively harness the power of wind. This was performed by designing and testing a vertical axis wind turbine with 2, 3 and 4 blades bent at 90 angles in wind speeds between 1.6 m/s and 4.2 m/s for every type of wind turbine. The results show that 2-blade vertical axis wind turbines coefficient of power (CP) = 0.28 is most capable of converting wind power into electricity with wind speeds of 3.4 m/s and 3-blade wind turbines CP = 0.40 in wind speeds of 2.2 m/s, and 4 blade wind turbines CP = 0.25 performed best in wind speeds of 2.4 m/s. The CP of all three wind turbines decreased as wind speeds increased to 4.2 m/s. The examination and calculation analysis results indicate that 3-blade wind turbines work more effectively than 2-blade and 4-blade wind turbines due to the asymmetric positioning creating a relatively small drag, and the distance between each blade and the shaft of the wind turbine creates a rift allowing for wind to flow which results in the blades hitting other. This increases the blades momentum leading to less turbulence for 3-blade wind turbines.
CITATION STYLE
Sule, L., Mochtar, A. A., & Jalaluddin. (2019). Performance of a 90-Bent Bladed Vertical Axis Wind Turbine Model with Various Numbers of Blades. In IOP Conference Series: Materials Science and Engineering (Vol. 619). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/619/1/012052
Mendeley helps you to discover research relevant for your work.