Conjugated polymers have emerged as promising materials for next-generation electronics. However, in spite of having several advantages, such as a low cost, large area processability and flexibility, polymer-based electronics have their own limitations concerning low electrical performance. To achieve high-performance polymer electronic devices, various strategies have been suggested, including aligning polymer backbones in the desired orientation. In the present paper, we report a simple patterning technique using a polydimethylsiloxane (PDMS) mold that can fabricate highly aligned nanowires of a diketopyrrolopyrrole (DPP)-based donor–acceptor-type copolymer (poly (diketopyrrolopyrrole-alt-thieno [3,2-b] thiophene), DPP-DTT) for high-performance field effect transistors. The morphology of the patterns was controlled by changing the concentration of the DPP-based copolymer solution (1, 3, 5 mg mL−1). The molecular alignment properties of three different patterns were observed with a polarized optical microscope, polarized UV-vis spectroscopy and an X-ray diffractometer. DPP-DTT nanowires made with 1 mg mL−1 solution are highly aligned and the polymer field-effect transistors based on nanowires exhibit more than a five times higher charge carrier mobility as compared to spin-coated film-based devices.
CITATION STYLE
Park, K. J., Kim, C. W., Sung, M. J., Lee, J., & Chun, Y. T. (2022). Semiconducting Polymer Nanowires with Highly Aligned Molecules for Polymer Field Effect Transistors. Electronics (Switzerland), 11(4). https://doi.org/10.3390/electronics11040648
Mendeley helps you to discover research relevant for your work.