The design of a smart robot for colonoscopy is challenging because of the limited available space, slippery internal surfaces, and tortuous 3D shape of the human colon. Locomotion forces applied by an endoscopic robot may damage the colonic wall and/or cause pain and discomfort to patients. This study reports a Soft Pneumatic Inchworm Double balloon (SPID) mini-robot for colonoscopy consisting of two balloons connected by a 3 degrees of freedom soft pneumatic actuator. SPID has an external diameter of 18 mm, a total length of 60 mm, and weighs 10 g. The balloons provide anchorage into the colonic wall for a bio-inspired inchworm locomotion. The proposed design reduces the pressure applied to the colonic wall and consequently pain and discomfort during the procedure. The mini-robot has been tested in a deformable plastic colon phantom of similar shape and dimensions to the human anatomy, exhibiting efficient locomotion by its ability to deform and negotiate flexures and bends. The mini-robot is made of elastomer and constructed from 3D printed components, hence with low production costs essential for a disposable device.
CITATION STYLE
Manfredi, L., Capoccia, E., Ciuti, G., & Cuschieri, A. (2019). A Soft Pneumatic Inchworm Double balloon (SPID) for colonoscopy. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47320-3
Mendeley helps you to discover research relevant for your work.