Chemokine regulation of human megakaryocytopoiesis

110Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We have previously shown that platelet factor 4 (PF4), a platelet- specific CXC chemokine, can directly and specifically inhibit human megakaryocyte colony formation. We therefore hypothesized that PF4 might function as a negative autocrine regulator of megakaryocytopoiesis. Herein we present additional studies characterizing the inhibitory effect of CXC chemokines on human megakaryocyte development. We first corroborated our initial studies by showing that recombinant human (rH), PF4, like the native protein, inhibited megakaryocytopoiesis. We then examined the inhibitory properties of other CXC family members. Neutrophil activating peptide-2 (NAP- 2), a naturally occurring N-terminally cleaved βTG peptide, was found to inhibit megakaryocytopoiesis with two to three orders of magnitude greater potency than PF4. Structure function studies showed that an N-terminal mutation, which eliminated NAP-2's neutrophil activating properties (NAP- 2(E2→A)), also abrogated its ability to inhibit megakaryocyte development. Further investigation of this type demonstrated that a chimeric PF4 protein (AELR/PF4) in which PF4's N-terminus was replaced with the first four amino acids of NAP-2 was also a potent inhibitor of megakaryocytopoiesis. Interleukin (IL)-8, another CXC chemokine, and three CC chemokines (macrophage inhibitory protein-1α [MIP-1α], MIP-1β, and C10) also specifically inhibited megakaryocyte colony formation at NAP-2 equivalent doses. CXC and CC chemokine inhibition was additive suggesting that the effects might be mediated through a common pathway. The inhibitory effects of NAP-2 and MIP-1α could not be overcome by adding physiologically relevant amounts of recombinant human megakaryocyte growth and development factor (MGDR) (50 ng/mL) to the cultures. Using Northern blot and reverse transcriptase-polymerase chain reaction (RT-PCR) based analyses, we documented mRNA expression of IL-8 receptor isoforms α and β in total platelet RNA and in normal human megakaryocytes, respectively. Based on these results, we hypothesize that chemokines play a physiologic role in regulating megakaryocytopoiesis. Because chemokines are elaborated by ancillary marrow cells, both autocrine and paracrine growth control is suggested, the effects of which might be exerted, in part, through α and β IL-8 receptors.

Cite

CITATION STYLE

APA

Gewirtz, A. M., Zhang, J., Ratajczak, J., Ratajczak, M., Park, K. S., Li, C., … Poncz, M. (1995). Chemokine regulation of human megakaryocytopoiesis. Blood, 86(7), 2559–2567. https://doi.org/10.1182/blood.v86.7.2559.2559

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free