Consistently sampled correlation filters with space anisotropic regularization for visual tracking

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Most existing correlation filter-based tracking algorithms, which use fixed patches and cyclic shifts as training and detection measures, assume that the training samples are reliable and ignore the inconsistencies between training samples and detection samples. We propose to construct and study a consistently sampled correlation filter with space anisotropic regularization (CSSAR) to solve these two problems simultaneously. Our approach constructs a spatiotemporally consistent sample strategy to alleviate the redundancies in training samples caused by the cyclical shifts, eliminate the inconsistencies between training samples and detection samples, and introduce space anisotropic regularization to constrain the correlation filter for alleviating drift caused by occlusion. Moreover, an optimization strategy based on the Gauss-Seidel method was developed for obtaining robust and efficient online learning. Both qualitative and quantitative evaluations demonstrate that our tracker outperforms state-of-the-art trackers in object tracking benchmarks (OTBs).

Cite

CITATION STYLE

APA

Shi, G., Xu, T., Guo, J., Luo, J., & Li, Y. (2017). Consistently sampled correlation filters with space anisotropic regularization for visual tracking. Sensors (Switzerland), 17(12). https://doi.org/10.3390/s17122889

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free