Human polymorphic variants of the NEIL1 DNA glycosylase

67Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In mammalian cells, the repair of DNA bases that have been damaged by reactive oxygen species is primarily initiated by a series of DNA glycosylases that include OGG1, NTH1, NEIL1, and NEIL2. To explore the functional significance of NEIL1, we recently reported that neil1 knock-out and heterozygotic mice develop the majority of symptoms of metabolic syndrome (Vartanian, V., Lowell, B., Minko, I. G., Wood, T. G., Ceci, J. D., George, S., Ballinger, S. W., Corless, C. L., McCullough, A. K., and Lloyd, R. S. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 1864-1869). To determine whether this phenotype could be causally related to human disease susceptibility, we have characterized four polymorphic variants of human NEIL1. Although three of the variants (S82C, G83D, and D252N) retained near wild type levels of nicking activity on abasic (AP) site-containing DNA, G83D did not catalyze the wild type β,δ-elimination reaction but primarily yielded the β-elimination product. The AP nicking activity of the C136R variant was significantly reduced. Glycosylase nicking activities were measured on both thymine glycol-containing oligonucleotides and γ-irradiated genomic DNA using gas chromatography/mass spectrometry. Two of the polymorphic variants (S82C and D252N) showed near wild type enzyme specificity and kinetics, whereas G83D was devoid of glycosylase activity. Although insufficient quantities of C136R could be obtained to carry out gas chromatography/mass spectrometry analyses, this variant was also devoid of the ability to incise thymine glycol-containing oligonucleotide, suggesting that it may also be glycosylase-deficient. Extrapolation of these data suggests that individuals who are heterozygous for these inactive variant neil1 alleles may be at increased risk for metabolic syndrome.

Cite

CITATION STYLE

APA

Roy, L. M., Jaruga, P., Wood, T. G., McCullough, A. K., Dizdaroglu, M., & Lloyd, R. S. (2007). Human polymorphic variants of the NEIL1 DNA glycosylase. Journal of Biological Chemistry, 282(21), 15790–15798. https://doi.org/10.1074/jbc.M610626200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free