De novo protein fold design through sequence-independent fragment assembly simulations

7Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

De novo protein design generally consists of two steps, including structure and sequence design. Many protein design studies have focused on sequence design with scaffolds adapted from native structures in the PDB, which renders novel areas of protein structure and function space unexplored. We developed FoldDesign to create novel protein folds from specific secondary structure (SS) assignments through sequence-independent replica-exchange Monte Carlo (REMC) simulations. The method was tested on 354 non-redundant topologies, where FoldDesign consistently created stable structural folds, while recapitulating on average 87.7% of the SS elements. Meanwhile, the FoldDesign scaffolds had well-formed structures with buried residues and solvent-exposed areas closely matching their native counterparts. Despite the high fidelity to the input SS restraints and local structural characteristics of native proteins, a large portion of the designed scaffolds possessed global folds completely different from natural proteins in the PDB, highlighting the ability of FoldDesign to explore novel areas of protein fold space. Detailed data analyses revealed that the major contributions to the successful structure design lay in the optimal energy force field, which contains a balanced set of SS packing terms, and REMC simulations, which were coupled with multiple auxiliary movements to efficiently search the conformational space. Additionally, the ability to recognize and assemble uncommon super-SS geometries, rather than the unique arrangement of common SS motifs, was the key to generating novel folds. These results demonstrate a strong potential to explore both structural and functional spaces through computational design simulations that natural proteins have not reached through evolution.

Cite

CITATION STYLE

APA

Pearce, R., Huang, X., Omenn, G. S., & Zhang, Y. (2023). De novo protein fold design through sequence-independent fragment assembly simulations. Proceedings of the National Academy of Sciences of the United States of America, 120(4). https://doi.org/10.1073/pnas.2208275120

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free