Longitudinal Study of Dynamic Epidemiology of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Pigs and Humans Living and/or Working on Pig Farms

  • Dohmen W
  • Liakopoulos A
  • Bonten M
  • et al.
8Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli represents a public health hazard due to reduced therapeutic options for the treatment of infections. Although direct contact with pigs is considered a risk factor for human ESBL-producing E. coli carriage through occupational exposure, nationwide data regarding the occurrence of such isolates among pigs and humans living and/or working on farms remain scarce. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales have been increasingly isolated from pigs, highlighting their potential for transmission to humans living and/or working within pig farms. As longitudinal data on the prevalence and the molecular characteristics of such isolates from the high-risk farming population remain scarce, we performed a long-term study on 39 Dutch pig farms. Fecal samples from pigs, farmers, family members, and employees were collected during four sampling occasions with a 6-month period. The presence of ESBL-producing Enterobacterales and their molecular characteristics (ESBL gene, plasmid, and sequence types) were determined by standard methods. Data on personal and farm characteristics were collected using questionnaires. ESBL-producing Escherichia coli was present in pigs at least once for 18 of 39 farms and in 17 of 146 farmers, family members, and/or employees. Among these 417 E. coli isolates, bla CTX-M-1 was the most frequently observed ESBL gene in pigs ( n = 261) and humans ( n = 25). Despite the great variety in plasmid (sub)types and E. coli sequence types (STs), we observed genetic similarity between human- and pig-derived isolates in (i) ESBL gene, plasmid (sub)type, and ST, suggesting potential clonal transmission in seven farms, and (ii) only ESBL gene and plasmid (sub)type, highlighting the possibility of horizontal transfer in four farms. Five pig farmers carried ESBL producers repeatedly, of whom two carried an identical combination of gene, plasmid (sub)type, and ST over time. Human ESBL carriage was associated with both presence of ESBL producers in pigs and average number of hours working on the pig farm per week, while prolonged human carriage was observed only incidentally. IMPORTANCE Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli represents a public health hazard due to reduced therapeutic options for the treatment of infections. Although direct contact with pigs is considered a risk factor for human ESBL-producing E. coli carriage through occupational exposure, nationwide data regarding the occurrence of such isolates among pigs and humans living and/or working on farms remain scarce. Therefore, we determined (i) the longitudinal dynamics in prevalence and molecular characteristics of ESBL-producing E. coli in Dutch pig farmers and their pigs over time and (ii) the potential transmission events between these reservoirs based on genetic relatedness and epidemiological associations in longitudinal data. Our data suggesting the possibility of clonal and horizontal dissemination of ESBL-producing Escherichia coli between pigs and pig farmers can be used to inform targeted intervention strategies to decrease the within-farm human exposure to ESBL-producing E. coli .

Cite

CITATION STYLE

APA

Dohmen, W., Liakopoulos, A., Bonten, M. J. M., Mevius, D. J., & Heederik, D. J. J. (2023). Longitudinal Study of Dynamic Epidemiology of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Pigs and Humans Living and/or Working on Pig Farms. Microbiology Spectrum, 11(1). https://doi.org/10.1128/spectrum.02947-22

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free