Vascular endothelial growth factor regulation of Weibel-Palade-body exocytosis

N/ACitations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Vascular endothelial growth factor (VEGF) not only regulates angiogenesis, vascular permeability, and vasodilation but also promotes vascular inflammation. However, the molecular basis for the proinflammatory effects of VEGF is not understood. We now show that VEGF activates endothelial cell exocytosis of Weibel-Palade bodies, releasing vasoactive substances capable of causing vascular thrombosis and inflammation. VEGF triggers endothelial exocytosis in part through calcium and phospholipase C-γ (PLC-γ) signal transduction. However, VEGF also modulates endothelial cell exocytosis by activating endothelial nitric oxide synthase (eNOS) production of nitric oxide (NO), which nitrosylates N-ethylmaleimide sensitive factor (NSF) and inhibits exocytosis. Thus, VEGF plays a dual role in regulating endothelial exocytosis, triggering pathways that both promote and inhibit endothelial exocytosis. Regulation of endothelial exocytosis may explain part of the proinflammatory effects of VEGF. © 2005 by The American Society of Hematology.

Cite

CITATION STYLE

APA

Matsushita, K., Yamakuchi, M., Morrell, C. N., Ozaki, M., O’Rourke, B., Irani, K., & Lowenstein, C. J. (2005). Vascular endothelial growth factor regulation of Weibel-Palade-body exocytosis. Blood, 105(1), 207–214. https://doi.org/10.1182/blood-2004-04-1519

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free