Research Progress on CO2 Capture, Utilization, and Storage (CCUS) Based on Micro-Nano Fluidics Technology

2Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The research and application of CO2 storage and enhanced oil recovery (EOR) have gradually emerged in China. However, the vast unconventional oil and gas resources are stored in reservoir pores ranging from several nanometers to several hundred micrometers in size. Additionally, CO2 geological sequestration involves the migration of fluids in tight caprock and target layers, which directly alters the transport and phase behavior of reservoir fluids at different scales. Micro- and nanoscale fluidics technology, with their advantages of in situ visualization, high temperature and pressure resistance, and rapid response, have become a new technical approach to investigate gas–liquid interactions in confined domains and an effective supplement to traditional core displacement experiments. The research progress of micro–nano fluidics visualization technology in various aspects, such as CO2 capture, utilization, and storage, is summarized in this paper, and the future development trends and research directions of micro–nano fluidics technology in the field of carbon capture, utilization, and storage (CCUS) are predicted.

Cite

CITATION STYLE

APA

Pan, X., Sun, L., Huo, X., Feng, C., & Zhang, Z. (2023, December 1). Research Progress on CO2 Capture, Utilization, and Storage (CCUS) Based on Micro-Nano Fluidics Technology. Energies. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/en16237846

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free