The occurrence of extreme drought poses a severe threat to forest ecosystems and reduces their capability to sequester carbon dioxide. This study analysed the impacts of a central European summer drought in 2015 on gross primary productivity (GPP) at two Norway spruce forest sites representing two contrasting climatic conditions—cold and humid climate at Bílý Křrířz (CZ-BK1) vs. moderately warm and dry climate at Rájec (CZ-RAJ). The comparative analyses of GPP was based on a three-year eddy covariance dataset, where 2014 and 2016 represented years with normal conditions, while 2015 was characterized by dry conditions. A significant decline in the forest GPP was found during the dry year of 2015, reaching 14% and 6% at CZ-BK1 and CZ-RAJ, respectively. The reduction in GPP coincided with high ecosystem respiration (Reco) during the dry year period, especially during July and August, when several heat waves hit the region. Additional analyses of GPP decline during the dry year period suggested that a vapour pressure deficit played a more important role than the soil volumetric water content at both investigated sites, highlighting the often neglected importance of considering the species hydraulic strategy (isohydric vs. anisohydric) in drought impact assessments. The study indicates the high vulnerability of the Norway spruce forest to drought stress, especially at sites with precipitation equal or smaller than the atmospheric evaporative demand. Since central Europe is currently experiencing large-scale dieback of Norway spruce forests in lowlands and uplands (such as for CZ-RAJ conditions), the findings of this study may help to quantitatively assess the fate of these widespread cultures under future climate projections, and may help to delimitate the areas of their sustainable production.
CITATION STYLE
Mensah, C., Šigut, L., Fischer, M., Foltýnová, L., Jocher, G., Acosta, M., … Marek, M. V. (2021). Assessing the contrasting effects of the exceptional 2015 drought on the carbon dynamics in two norway spruce forest ecosystems. Atmosphere, 12(8). https://doi.org/10.3390/atmos12080988
Mendeley helps you to discover research relevant for your work.