A selective kernel-based cycle-consistent generative adversarial network for unpaired low-dose CT denoising

16Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Low-dose computed tomography (LDCT) denoising is an indispensable procedure in the medical imaging field, which not only improves image quality, but can mitigate the potential hazard to patients caused by routine doses. Despite the improvement in performance of the cycle-consistent generative adversarial network (CycleGAN) due to the well-paired CT images shortage, there is still a need to further reduce image noise while retaining detailed features. Inspired by the residual encoder-decoder convolutional neural network (RED-CNN) and U-Net, we propose a novel unsupervised model using CycleGAN for LDCT imaging, which injects a two-sided network into selective kernel networks (SK-NET) to adaptively select features, and uses the patchGAN discriminator to generate CT images with more detail maintenance, aided by added perceptual loss. Based on patch-based training, the experimental results demonstrated that the proposed SKFCycleGAN outperforms competing methods in both a clinical dataset and the Mayo dataset. The main advantages of our method lie in noise suppression and edge preservation.

Cite

CITATION STYLE

APA

Tan, C., Yang, M., You, Z., Chen, H., & Zhang, Y. (2022). A selective kernel-based cycle-consistent generative adversarial network for unpaired low-dose CT denoising. Precision Clinical Medicine, 5(2). https://doi.org/10.1093/pcmedi/pbac011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free