Platelet-derived growth factor (PDGF) activates phospholipase D (PLD) in mouse embryo fibroblasts (MEFs). In order to investigate a role for phospholipase C-γ1 (PLC-γ1), we used targeted disruption of the Plcg1 gene in the mouse to develop Plcg1(+/+) and Plcg1(-/-) cell lines. Plcg1(+/+) MEFs treated with PDGF showed a time- and dose-dependent increase in the production of total inositol phosphates that was substantially reduced in Plcg1(-/-) cells. Plcg1(+/+) cells also showed a PDGF-induced increase in PLD activity that had a similar dose dependence to the PLC response but was down- regulated after 15 min. Phospholipase D activity, however, was markedly reduced in Plcg1(-/-) cells. The PDGF-induced inositol phosphate formation and the PLD activity that remained in the Plcg1(-/-) cells could be attributed to the presence of phospholipase C-γ2 (PLC-γ2) in the Plcg1(-/- ) cells. The PLC-γ2 expressed in the Plcg1(-/-) cells was phosphorylated on tyrosine in response to PDGF treatment, and a small but significant fraction of the Plcg1(-/-) cells showed Ca2+ mobilization in response to PDGF, suggesting that the PLC-γ2 expressed in the Plcg1(-/-) cells was activated in response to PDGF. The inhibition of PDGF-induced phospholipid hydrolysis in Plcg1(-/-) cells was not due to differences in the level of PDGF receptor or in the ability of PDGF to cause autophosphorylation of the receptor. Upon treatment of the Plcg1(-/-) cells with oleoylacetylglycerol and the Ca2+ ionophore ionomycin to mimic the effect of PLC-γ1, PLD activity was restored. The targeted disruption of Plcg1 did not result in universal changes in the cell signaling pathways of Plcg1(-/-) cells, because the phosphorylation of mitogen-activated protein kinase was similar in Plcg1(+/+) and Plcg1(-/-) cells. Because increased plasma membrane ruffles occurred in both Plcg1(+/+) and Plcg1(-/-) cells following PDGF treatment, it is possible neither PLC nor PLD are necessary for this growth factor response. In summary, these data indicate that PLC-γ is required for growth factor- induced activation of PLD in MEFs.
CITATION STYLE
Hess, J. A., Ji, Q. S., Carpenter, G., & Exton, J. H. (1998). Analysis of platelet-derived growth factor-induced phospholipase D activation in mouse embryo fibroblasts lacking phospholipase C-γ1. Journal of Biological Chemistry, 273(32), 20517–20524. https://doi.org/10.1074/jbc.273.32.20517
Mendeley helps you to discover research relevant for your work.