To combat the release of petroleum-derived plastics into the environment the European Commission has adopted the EU plastics strategy, which aims for a complete ban on single-use plastics by 2030. Environmentally friendly and sustainable packaging like bioplastic is being up taken at significant levels by companies and consumers. In this study, the environmental impact of novel gelatine–starch blend bioplastics is investigated. The assessments included ecotoxicology with different species that can be found in marine and soil environments to simulate natural conditions. Microalgae, plant, and nematode species were chosen as these are representative of their habitats and are known for their sensitivity to pollutants. Degradation rates of these novel bioplastics were assessed as well as microbiome analysis of the soil before and after bioplastic degradation. The main findings of this study are that (i) the bioplastic generated can be fully biodegraded in soil environments at moderate conditions (20◦ C) leaving no physical traces; (ii) bioplastic did not exhibit significantly adverse effects on any organisms assessed in this study; (iii) microbiome analysis of the soil after biodegradation showed a decrease in alpha diversity and a significant increase of Actinobacteria and Firmicutes phyla, which were dominative in the soil.
CITATION STYLE
Mroczkowska, M., Germaine, K., Culliton, D., Duarte, T. K., & Neves, A. C. (2021). Assessment of biodegradation and eco-toxic properties of novel starch and gelatine blend bioplastics. Recycling, 6(4). https://doi.org/10.3390/recycling6040081
Mendeley helps you to discover research relevant for your work.