Sago, tapioca starch, is manufactured by over 800 small-scale units located in the Salem district of the State of Tamilnadu, South India. These units generate large quantities of high-strength wastewater requiring elaborate treatment prior to disposal. The present study is an attempt to treat the sago wastewater using a hybrid reactor, which combines the advantages of both fixed-film and up-flow anaerobic sludge blanket systems. A hybrid reactor with a volume of 5.9 L was operated at organic loading rates varying from 10.4 to 24.6 kg COD/m3d. After 120 d of start-up, an appreciable decrease in COD and efficient removal of solids were evident. The COD removal varied from 91 to 83%. While the removal of total solids was in the range of 56 to 63%, that of volatile solids varied from 67 to 72%. The methane production during the study period was in the range of 0.11 to 0.14 L CH4/g COD-d and the percentage was from 55 to 67%. The ideal organic loading rate (OLR) was determined on the basis of tolerance of the reactor towards higher organic loading rate and it was found to be 23.4 kg COD/m3d. The findings of the study open new possibilities for the design of low-cost and compact on-site treatment systems with very short retention periods. Copyright © 2006, CAWQ.
CITATION STYLE
Banu, J. R., Kaliappan, S., & Beck, D. (2006). Treatment of sago wastewater using hybrid anaerobic reactor. Water Quality Research Journal of Canada, 41(1), 56–62. https://doi.org/10.2166/wqrj.2006.006
Mendeley helps you to discover research relevant for your work.