Spatial Resolution Enhancement of Brillouin Optical Correlation-Domain Reflectometry Using Convolutional Neural Network: Proof of Concept

9Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Brillouin optical correlation-domain reflectometry (BOCDR) is a fiber-optic distributed sensing technique with single-end accessibility and high spatial resolution. In BOCDR, the measured Brillouin gain spectrum (BGS) distribution is generally given by a convolution of the intrinsic BGS distribution and the beat-power spectrum. In most conventional implementations, the Brillouin frequency shift (BFS) distribution is directly obtained using the measured BGS distribution. Determining the BFS distribution on the basis of the intrinsic BGS distribution will give potentially higher spatial resolution, which can be achieved by deconvolution of the measured BGS distribution. In this work, we employ a convolutional neural network to perform this deconvolution processing in BOCDR and show its potential for spatial resolution enhancement. A spatial resolution which is 5 times higher than the nominal value is demonstrated.

Cite

CITATION STYLE

APA

Caceres, J. N., Noda, K., Zhu, G., Lee, H., Nakamura, K., & Mizuno, Y. (2021). Spatial Resolution Enhancement of Brillouin Optical Correlation-Domain Reflectometry Using Convolutional Neural Network: Proof of Concept. IEEE Access, 9, 124701–124710. https://doi.org/10.1109/ACCESS.2021.3110874

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free