Entropic metric alignment for correspondence problems

119Citations
Citations of this article
80Readers
Mendeley users who have this article in their library.

Abstract

Many shape and image processing tools rely on computation of correspondences between geometric domains. Efficient methods that stably extract "soft" matches in the presence of diverse geometric structures have proven to be valuable for shape retrieval and transfer of labels or semantic information. With these applications in mind, we present an algorithm for probabilistic correspondence that optimizes an entropy-regularized Gromov-Wasserstein (GW) objective. Built upon recent developments in numerical optimal transportation, our algorithm is compact, provably convergent, and applicable to any geometric domain expressible as a metric measure matrix. We provide comprehensive experiments illustrating the convergence and applicability of our algorithm to a variety of graphics tasks. Furthermore, we expand entropic GW correspondence to a framework for other matching problems, incorporating partial distance matrices, user guidance, shape exploration, symmetry detection, and joint analysis of more than two domains. These applications expand the scope of entropic GW correspondence to major shape analysis problems and are stable to distortion and noise.

Author supplied keywords

Cite

CITATION STYLE

APA

Solomon, J., Peyré, G., Kim, V. G., & Sra, S. (2016). Entropic metric alignment for correspondence problems. In ACM Transactions on Graphics (Vol. 35). Association for Computing Machinery. https://doi.org/10.1145/2897824.2925903

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free