The application of electrochemical biosensors based on impedance detection has grown during the past years due to their high sensitivity and rapid response, making this technique extremely useful to detect biological interactions with biosensor platforms. This chapter is focused on the use of electrochemical impedance spectroscopy (EIS) for bacterial detection in two ways. On one hand, bacteria presence may be determined by the detection of metabolites produced by bacterial growth involving the media conductivity changes. On the other hand, faster and more selective bacterial detection may be achieved by the immobilization of bacteria on a sensor surface using biorecognition elements (antibodies, antimicrobial peptides, aptamers, etc.) and registering changes produced in the charge transfer resistance (faradic process) or interfacial impedance (nonfaradic process). Here we discuss different types of impedimetric biosensors for microbiological applications, making stress on their most important parameters, such as detection limits, detection times, selectivity, and sensitivity. The aim of the paper was to give a critical review of recent publications in the field and mark the future trends.
CITATION STYLE
Brosel-Oliu, S., Uria, N., Abramova, N., & Bratov, A. (2015). Impedimetric Sensors for Bacteria Detection. In Biosensors - Micro and Nanoscale Applications. InTech. https://doi.org/10.5772/60741
Mendeley helps you to discover research relevant for your work.