Identifying oral disease variables associated with pneumonia emergence by application of machine learning to integrated medical and dental big data to inform eHealth approaches

0Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background: The objective of this study was to build models that define variables contributing to pneumonia risk by applying supervised Machine Learning-(ML) to medical and oral disease data to define key risk variables contributing to pneumonia emergence for any pneumonia/pneumonia subtypes. Methods: Retrospective medical and dental data were retrieved from Marshfield Clinic Health System's data warehouse and integrated electronic medical-dental health records (iEHR). Retrieved data were pre-processed prior to conducting analyses and included matching of cases to controls by (a) race/ethnicity and (b) 1:1 Case: Control ratio. Variables with >30% missing data were excluded from analysis. Datasets were divided into four subsets: (1) All Pneumonia (all cases and controls); (2) community (CAP)/healthcare associated (HCAP) pneumonias; (3) ventilator-associated (VAP)/hospital-acquired (HAP) pneumonias and (4) aspiration pneumonia (AP). Performance of five algorithms were compared across the four subsets: Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forests. Feature (input variables) selection and ten-fold cross validation was performed on all the datasets. An evaluation set (10%) was extracted from the subsets for further validation. Model performance was evaluated in terms of total accuracy, sensitivity, specificity, F-measure, Mathews-correlation-coefficient and area under receiver operating characteristic curve (AUC). Results: In total, 6,034 records (cases and controls) met eligibility for inclusion in the main dataset. After feature selection, the variables retained in the subsets were: All Pneumonia (n = 29 variables), CAP-HCAP (n = 26 variables); VAP-HAP (n = 40 variables) and AP (n = 37 variables), respectively. Variables retained (n = 22) were common across all four pneumonia subsets. Of these, the number of missing teeth, periodontal status, periodontal pocket depth more than 5 mm and number of restored teeth contributed to all the subsets and were retained in the model. MLP outperformed other predictive models for All Pneumonia, CAP-HCAP and AP subsets, while SVM outperformed other models in VAP-HAP subset. Conclusion: This study validates previously described associations between poor oral health and pneumonia. Benefits of an integrated medical-dental record and care delivery environment for modeling pneumonia risk are highlighted. Based on findings, risk score development could inform referrals and follow-up in integrated healthcare delivery environment and coordinated patient management.

Cite

CITATION STYLE

APA

Shimpi, N., Glurich, I., Panny, A., Hegde, H., Scannapieco, F. A., & Acharya, A. (2022). Identifying oral disease variables associated with pneumonia emergence by application of machine learning to integrated medical and dental big data to inform eHealth approaches. Frontiers in Dental Medicine, 3. https://doi.org/10.3389/fdmed.2022.1005140

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free