A class of models for uncorrelated random variables

Citations of this article
Mendeley users who have this article in their library.


We consider the class of multivariate distributions that gives the distribution of the sum of uncorrelated random variables by the product of their marginal distributions. This class is defined by a representation of the assumption of sub-independence, formulated previously in terms of the characteristic function and convolution, as a weaker assumption than independence for derivation of the distribution of the sum of random variables. The new representation is in terms of stochastic equivalence and the class of distributions is referred to as the summable uncorrelated marginals (SUM) distributions. The SUM distributions can be used as models for the joint distribution of uncorrelated random variables, irrespective of the strength of dependence between them. We provide a method for the construction of bivariate SUM distributions through linking any pair of identical symmetric probability density functions. We also give a formula for measuring the strength of dependence of the SUM models. A final result shows that under the condition of positive or negative orthant dependence, the SUM property implies independence. © 2010 Elsevier Inc.




Ebrahimi, N., Hamedani, G. G., Soofi, E. S., & Volkmer, H. (2010). A class of models for uncorrelated random variables. Journal of Multivariate Analysis, 101(8), 1859–1871. https://doi.org/10.1016/j.jmva.2010.03.011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free