Combinatorial regulation of the balance between dynein microtubule end accumulation and initiation of directed motility

  • Jha R
  • Roostalu J
  • Cade N
  • et al.
N/ACitations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

Cytoplasmic dynein is involved in a multitude of essential cellular functions. Dynein's activity is controlled by the combinatorial action of several regulatory proteins. The molecular mechanism of this regulation is still poorly understood. Using purified proteins, we reconstitute the regulation of the human dynein complex by three prominent regulators on dynamic microtubules in the presence of end binding proteins (EBs). We find that dynein can be in biochemically and functionally distinct pools: either tracking dynamic microtubule plus-ends in an EB-dependent manner or moving processively towards minus ends in an adaptor protein-dependent manner. Whereas both dynein pools share the dynactin complex, they have opposite preferences for binding other regulators , either the adaptor protein Bicaudal-D2 (BicD2) or the multi-functional regulator Lissencephaly-1 (Lis1). BicD2 and Lis1 together control the overall efficiency of motility initiation. Remarkably, dynactin can bias motility initiation locally from microtubule plus ends by autonomous plus-end recognition. This bias is further enhanced by EBs and Lis1. Our study provides insight into the mechanism of dynein regulation by dissecting the distinct functional contributions of the individual members of a dynein regulatory network.

Cite

CITATION STYLE

APA

Jha, R., Roostalu, J., Cade, N. I., Trokter, M., & Surrey, T. (2017). Combinatorial regulation of the balance between dynein microtubule end accumulation and initiation of directed motility. The EMBO Journal, 36(22), 3387–3404. https://doi.org/10.15252/embj.201797077

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free