Combustion CFD modeling of a spark ignited optical access engine fueled with gasoline and ethanol

Citations of this article
Mendeley users who have this article in their library.


In this study we present the Computational Fluid Dynamics (CFD) modeling of the combustion process using detailed chemistry in a spark-ignited (SI) optical access engine operated at part load using gasoline and ethanol as fuels. Simulation results are comparedagainst experimental optical and indicating data. The engine is installed at the Department of Engineering of the University of Perugia, and it features a four-valve head, a transparent flat piston and a port-fuel-injection (PFI) system. Full open cycle simulations have been performed using the commercial code CONVERGE. The combustion process has been simulated using detailed chemistry and adaptive mesh refinement (AMR) to resolve in detail and track the reaction zone, in a Reynolds Averaged Navier-Stokes (RANS) modeling framework. In-cylinder pressure, heat release, and flame morphology have been compared with experimental indicating and imaging data. Tests and simulations span different air-fuel ratios in lean and rich conditions (relative air-fuel ratio λranges from 0.9 to 1.1). Results indicate that simulations are able to predict experimental data with high accuracy. Variations due to changing fuel type and air-fuel ratio are well captured. The computational cost to achieve grid-independent results has been evaluated and it is also not excessively high. Taking into account that the engine speed was quite low, i.e., 900 rpm, we conclude that, in this condition, detailed chemistry coupled with RANS works satisfactorily without turbulence chemistry interaction sub-models, and therefore without any tunings.




Battistoni, M., Mariani, F., Risi, F., & Poggiani, C. (2015). Combustion CFD modeling of a spark ignited optical access engine fueled with gasoline and ethanol. In Energy Procedia (Vol. 82, pp. 424–431). Elsevier Ltd.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free