Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites

74Citations
Citations of this article
162Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium. Fraschka, Filarsky et al. performed a genome-wide characterization of heterochromatin organization across multiple species, strains, and life cycle stages of malaria parasites. This revealed that heterochromatic gene silencing is a conserved strategy to drive clonal variation of surface antigens and to control life cycle stage transitions and cell differentiation.

Cite

CITATION STYLE

APA

Fraschka, S. A., Filarsky, M., Hoo, R., Niederwieser, I., Yam, X. Y., Brancucci, N. M. B., … Voss, T. S. (2018). Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites. Cell Host and Microbe, 23(3), 407-420.e8. https://doi.org/10.1016/j.chom.2018.01.008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free